
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4692 427

Distributed Computing Based Methods for

Anomaly Analysis in Large Datasets

Remya G
1
, Anuraj Mohan

1

Assistant Professor, Dept of CSE, NSS College of Engineering, Palakkad, India
 1

Abstract: Anomaly detection is considered as one among the important domain in data mining. Both supervised and

unsupervised learning methods are used in anomaly detection task. In this paper emphasis is given to distance based

prediction of anomalies. We studied the traditional methods which involves index-based, nested-loop and cell-based

approaches towards anomaly detection. As the size of the datasets become very large the task of detecting anomalies

becomes computationally complex. Having the push towards big data mining, it will become more necessary to adopt

existing anomaly detection algorithms to various distributed computing platforms. Our paper is based on a survey on

the different strategies that can be adopted for anomaly analysis using distributed computing techniques. First we

studied the concept of anomaly detection solving set, a subset of the input data set representing a model that can be

used to predict anomalies. The solving set is defined using necessary number of points that helps in the detection of the

top anomalies by taking into consideration only a subset of all the pair wise distances from the data set. Then we

analysed the possibility of using Map Reduce framework for performing anomaly analysis. A MapReduce based

solving set algorithm for anomaly detection using Hadoop framework is also proposed.

Keywords: Anomaly, Distributed Computing, Map Reduce, Hadoop

I. INTRODUCTION

An anomaly is a data object that is very much different

from the compared normal objects as if it were developed

using a unnatural methodology. Motivation for anomaly

analysis involves fraud detection, customer segmentation,

customized marketing, medical treatment etc. Both

supervised and unsupervised methods are used in anomaly

analysis task. Using supervised learning techniques for

anomaly analysis is less efficient as the main challenge

involves is the presence of imbalance classes.

Unsupervised methods uses the basic principle that an

anomaly is expected to be far away from any groups of

normal objects. To improve the quality of anomaly

detection, one can get help from models for normal objects

learned from unsupervised methods which we usually refer

as semi-supervised learning. In a proximity based method

an object is an anomaly if the nearest neighbors of the

object are far away, i.e., the distance of the object is

significantly large from the distance between most of the

other objects in the same data set. Two major types of

proximity-based anomaly detection techniques are

distance-based and density-based methods. A top-m

distance-based anomaly in a data set is an object having

weight greater than the m
th

 largest weight, where the

weight of a data set object is computed as the sum of the

distances from the object to its m nearest neighbors.

Distributed computing can be defined to the use of

distributed systems to solve computing problems. In

distributed computing, a problem is divided into many sub

tasks, each task can be assigned to one or more

computers, which can communicate to each other

by message passing and can finally generate a single result.

Distributed algorithms are a classification of Parallel

algorithms, which are executed concurrently, with different

processors executing various parts of the algorithm and the

data and operations at one processor, is abstracted from the

other. One of the major issues in designing and

implementing distributed algorithms is to maintain proper

co-ordination between parts of the algorithm and to handle

the system failures and unreliable communications media.

Map Reduce [16] is a distributed computing framework

developed at Google for the analytics of large

heterogeneous data that have been divided over many

computers. Its programming model allows the user to

neglect about many of the issues associated with distributed

computing: splitting up and assigning the input to various

systems, scheduling and running computation tasks on the

available nodes and coordinating the necessary

communication between tasks. Map Reduce framework

uses terms of key-value pairs as input, which are generated

from an input file by user-configurable rules. Map Reduce

uses a very simple programming abstraction, which in its

most common form, requires its user to design only two

functions - map and reduce. Hadoop is an open source

framework which uses the Map Reduce programming

model for writing and running distributed applications that

process large amounts of data.

II. RELATED WORK

The concept of distance-based anomaly relies on the notion

of the neighbourhood of a point, typically, the k nearest

neighbours, and has been first introduced by Knorr and Ng

[1], [2]. The authors present two algorithms, the first one is

a nested loop algorithm that runs in O(kN2) time, while the

next one is a cell-based algorithm that has a polynomial

time complexity with respect to the number of points of

the data set, but exponential with respect to the number of

dimensions of the data set. On the other hand, the nested

loop approach is impractical when anomalies in large data

sets have to be mined. In [3], a new definition of distance-

based anomaly that takes into account the whole

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4692 428

neighbourhood by considering, for each point p, the sum of

the proximities from its n nearest neighbours, is proposed.

An analogous definition of anomaly based on the k-nearest

neighbours has been used in [4] for unsupervised anomaly

detection to detect intrusions in unlabeled data. A complete

discussion on the need, the understanding, and the

intentional information of distance-based anomalies, as

well as the relevant areas in which the anomaly concept can

be applied, can be found in [5], [6] .A parallel version of

nested loop approach for anomaly detection is introduced

in[7]. Dutta et al. [8] proposed algorithms for the

distributed computation of principal components and top-k

anomaly detection. The concept of anomaly detection

solving set, a subset of the input data set representing a

model that can be used to predict anomalies, is defined in

[9]. A distributed method for detecting distance-based

anomalies in very large data sets is proposed in [11]. The

possibility of using Map Reduce parallel programming

model in many machine learning and data mining

algorithms for big data mining is studied in [12]. A Hadoop

Map Reduce based tool for anomaly analysis is

implemented by Pranab Ghosh in[13]

A. Definition of the Tasks

In the following, we assume that any data set is a finite

subset of a given metric space.

Anomaly Weight: Given an object p D, the weight wk (p,

D) of p in D is the sum of the distances from p to its k

nearest neighbors in D.

Top n Anomalies: Let T be a subset of D having size n. If

there not exist objects x T and y in (D \T) such that wk(y,

D)>wk(x, D), then T is said to be the set of the top n

anomalies in D. In such a case, w*=minx wk(x, D) is

said to be the weight of the top nth anomaly, and the

objects in are said to be the top n anomalies in D [3].

Anomaly Detection Solving Set [9]: An anomaly detection

solving set S is a subset of D such that, for each y E (D \ S),

it holds that wk(y, S) ≤ w*, where w* is the weight of the

top nth anomaly in D. It is found that a solving set S always

defines the set T of the top n anomalies in D and,

moreover, it can be used to predict unknown anomalies.

B. Solving Set Algorithm [9]

At each iteration the algorithm compares each object with a

selected small subset of the complete data set objects called

candidate set, and stores their k nearest neighbours with

respect to the candidate set. From these stored neighbours,

an upper limit to the actual weight of each object can thus

be calculated. The actual weights of the candidate objects

will be identified as they are compared with every object in

the data set. An object with upper limit weight lower than

the n
th

highest weight associated with a candidate object are

called non active as these objects cannot belong to the top-

n anomalies, while the others are called active. Random

objects are selected as candidates in the beginning. At each

subsequent iterations candidate set is built by selecting,

among the active objects of the data set not already inserted

during the previous iterations and the objects having the

highest current weight upper bounds. During the

computation, if an object becomes non active, then it need

not be considered for adding into the candidate set, because

it cannot be an anomaly. As the algorithm progresses new

objects, more precise weights are computed and will result

in the rise of non-active objects. The algorithm terminates

when no more objects have to be observed.

C. Distributed SolvingSet Algorithm [11]

The Distributed Solving Set algorithm adopts the same

procedure of the Solving Set algorithm. It consists of a

main cycle executed by a controller node, which iteratively

performs the following two tasks: 1) the basic computation,

which is done by every node in parallel; and 2) the

combining of the incomplete results returned by each node

after completing its job. The computation is done by

estimating of the anomaly weight of each object and of a

global lower bound for the weight, below which points are

sure to be non-anomalies. Alternate local and global

information is considered for iteratively refining the above

estimates.

It can be noted while when that several mining algorithms

deal with distributed data set by computing local models

which are aggregated in a general model as a final step in

the controller node, the Distributed Solving Set algorithm

is dissimilar, since it computes the true global information

through iterations where only selected global data and all

the local data are involved.

The basic operation executed at each node consists in

the following steps:

1) The current solving set objects are received along

with the current lower bound for the weight of the

top nth anomaly,

2) Compare them with the local objects.

3) Extract a new set of local candidate objects (the

data points with the top weights, according to the

current calculations together with the list of local

nearest neighbors with respect to the solving set.

4) Determining the number of local active objects, that

is the data points which are having weight not

smaller than the current lower bound.

The comparison is performed in many distinct cycles, in

order to avoid unnecessary computations. The above data

are used in the synchronization step by the controller node

to generate a new set of global candidates to be used in the

following iteration, and for each of them the true list of

distances from the nearest neighbors, to compute the new

lower bound for the weight.

D. MapReduce model for distance based anomaly

analysis[13].

We essentially need to find the k nearest neighbors for a

data point and find its total distance to the k nearest

neighbors and use that as the anomaly score. A MapReduce

programming model can be deployed for this purpose by

[13]. The Map and Reduce parts of MapReduce are both

defined with respect to data represented as (key, value)

pairs. Map function takes as input (key, value) pair and

returns a (key, value) pair as output. The logic needed to

process the input will be defined inside the map function:

Map (k1, v1) → list (k2, v2).The Map operation will be

applied to every pair in the input in parallel. Then the Map

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4692 429

Reduce framework internally does a shuffle and sort phase

in which the same key from all lists will be grouped

together, and one group will be assigned for each key. The

Reduce function is then applied is to each such group in

parallel, which will finally produce a list of values which

belongs to the same domain: Reduce (k2, list (v2)) → list

(v3). Each Reduce call will either produces either a value

or a null return. The final result will be the consolidated

results from all the calls.

Two MapReduce jobs for performing the anomaly

detection task is proposed in [13]

The jobs of the task are

1) A MapReduce job to find pair wise distance between

all data points.

2) A MapReduce job which finds the k nearest neighbors

of an object and find the weight of the object with

respect to the k nearest neighbors.

The immediate issue that comes for this MapReduce is how

to divide up the work of pairing up entities and calculate

the distance for each pair. The idea is to partition each set

of objects and pair up the partitions from each object. The

partitioning can be done by hashing the object Id.The Id of

each object is hashed. For each object type we get a set of

hash values. All the possible combination of hash values

for the two object types can be taken. For each hash value

pair, we pair up the objects from each type falling in

the two hash values. The distance computation between

objects for each hash value pair is distributed among the

reducers. The mapper output key is a function of two hash

values. The following function is used to generate the

mapper output key

key = (hash(SID) % hashBucketCount) *

hashBucketCount + hash(TID) % hashBucketCount

where SID = Source object ID ,TID = Target object ID and

hashBucketCount = Number of hash buckets, which is

configurable. To distribute the load uniformly across

reducers through Hadoop‟s default reducer partitioner,

hashBucketCount should be chosen properly. For example,

if the value chosen is 10, there will be 200 unique values

for the key. The values for a given mapper key will contain

instances of objects of both types. Since we have to pair up

instances of one type entity with instances of another type,

we need a way to segregate the instances, so instances of

one type appears before the instances of the other type in

the list of values when the reducer gets invoked. This will

enable easier nested loop join. The key defined earlier will

be used as the base part of the key. The key is enhanced so

that it will ensure that that the source entities will appear

before the target entities. The mapper of Average

Distance has the first object ID along with the distance as

the key and the distance and the second object ID as the

value. A secondary sorting by the distance on the key can

be performed. The first object ID is the base part of the key

and the distance is the key extension. In the reducer, for a

given entity we get all the other objects sorted by distance.

The reducer retains the first k neighbouring objects and

finds the average distance to them.

There are number of ways to detect anomalies from the

result, as follows

1) Select the top n after sorting the result by descending

order of the average distance

2) Select all with average distance over a predefined

threshold after sorting the result by the descending

order of the average distance.

III. MAPREDUCE BASED SOLVING SET

ALGORITHM

We propose to modify the solving set algorithm so as to

fit into the MapReduce framework of Hadoop. To design

the algorithm in Hadoop, the concept of chaining

MapReduce jobs is used. Chaining means executing

multiple MapReduce jobs one after the other. In this

method, there will be multiple stages of MapReduce in

which there will be an Initial MapReduce Stage, a number

of intermediate stages and a final stage. The numbers of

intermediate stages are user controlled.

A. Initial Stage

The initial MapReduce phase takes as input the dataset,

outputs a candidate set (initially random).The output from

the initial MapReduce phase is fed into the intermediate

stage.

B. Intermediate Stage

The intermediate stage contains the following modules

1) A supervisor MapReduce module which takes as input

the candidate objects, stores it‟s true as well as upper

bound weights and generates new candidate objects by

selecting objects with top n upper bound weight.

2) The Similarity MapReduce module which takes as

input, output from supervisor MapReduce module and

finds the distance between the candidate set objects and

all other objects which is stored in the HDFS.

3) The output from similarity MapReduce module is fed

into Compute Weight MapReduce module which finds

K nearest neighbors of each candidate objects and

thereby calculates its true weight. This module also

finds the upper bound weights of all the objects and

makes the objects with upper bound weight less than

the least true weight, non-active.ie they cannot be

considered as anomalies and are excluded in further

MapReduce stages. The module emits as output objects

along with its weights. In the next intermediate phase

the result of ComputeWeight MapReduce module fed

as input to the supervisor MapReduce module which

updates the weight information which it stored about

the candidate objects and emits top n upper bound

weighed objects as the output. In the successive

intermediate stages new candidates will be generated

and the supervisor dynamically changes the candidate

objects by comparing the weights. When the supervisor

MapReduce module receives the same candidate set as

it generated in the previous iteration the algorithm

terminates.

C. Final Stage

The output from the final intermediate stage is fed into the

final Map Reduce stage which writes the anomaly objects

to a file that can be accessed by the user.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4692 430

IV. EXPERIMENTS

The Distributed solving set algorithm is coded in Java and

the communications are done through the Java libraries

implementing the TCP sockets. As experimental platform,

we used 6 workstations, each equipped with a Intel 2 GHz

processor and 2 GB of RAM, interconnected by an

Ethernet network. The dataset used in the experiment is

Poker which is obtained from the real data set Poker

Hands, available at UCI repository, by removing the class

label. The Poker consists of 1000000 instances of10

attributes. For Map Reduce implementation of anomaly

detection a Hadoop cluster consisting of 6 nodes were set

up. Experimental results showed that the distributed

strategies are more efficient than single node nested loop

approaches.

The Map Reduce based strategies holds the following

advantages over the distributed solving set algorithm.

1) It can resolve scalability issues that comes with

anomaly detection over big data due to use of

Hadoop system which is highly scalable

2) The reliability of the system is high as the data is

stores in the HDFS

V. CONCLUSION

We aimed at parallelizing various strategies that can are

used in anomaly detection task. We first discussed the basic

techniques used in distance based anomaly detection. The

solving set algorithm and the distributed solving set

algorithm for anomaly detection is studied and

implemented. The possibility of using MapReduce model

using Hadoop for anomaly detection is studied and a nested

loop based anomaly detection algorithm is implemented in

Hadoop framework. We also propose a MapReduce based

solving set algorithm for solving the anomaly detection

task. We conclude that the MapReduce based strategies

may be more suitable for anomaly detection in big datasets.

We aim to learn more machine learning techniques like

SVM and parallelize them so as to work with MapReduce

model. We also aim to develop distributed algorithms for

statistical based and clustering based anomaly detection

methods and compare the results with distance based

methods.

REFERENCES

[1] E. Knorr and R. Ng, “Algorithms for Mining Distance-Based
Outliers in Large Datasets,” Proc. Int‟l Conf. Very Large Databases

(VLDB ‟98), pp. 392-403, 1998.

[2] E. Knorr, R. Ng, and V. Tucakov, “Distance-Based Outlier:

Algorithms and Applications,” VLDB J., vol. 8, nos. 3-4, pp. 237-

253, 2000.

[3] F.Angiulli and C.Pizzuti, “Outlier Mining in Large High-
Dimensional Data Sets,” IEEE Trans. Knowledge and Data

Eng.,vol. 2, no. 17, pp. 203-215, Feb. 2005.

[4] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A
Geometric Framework for Unsupervised Anomaly Detection:

Detecting Intrusions in Unlabeled Data,” Applications of Data

Mining in Computer Security, Kluwer, 2002.
[5] E. Knorr and R. Ng, “Finding Intentional Knowledge of Distance-

Based Outliers,” Proc. Int‟l Conf. Very Large Databases (VLDB

‟99), pp. 211-222, 1999.

[6] E. Knorr, R. Ng, and V. Tucakov, “Distance-Based Outlier:

Algorithms and Applications,” VLDB J., vol. 8, nos. 3-4, pp. 237-
253, 2000.

[7] Distributed and Parallel Databases, 12, 5–26, 2002 Kluwer

Academic Publishers. Manufactured in The Netherlands. Parallel
Mining of Outliers in Large Database.

[8] H. Dutta, C. Giannella, K.D. Borne, and H. Kargupta, “Distributed

Top-K Outlier Detection from Astronomy Catalogs Using the
DEMAC System,” Proc. SIAM Int‟l Conf. Data Mining (SDM),

2007.

[9] Angiulli.F, Basta.S, and Pizzuti.C (Feb 2006), “Distance-Based
Detection and Prediction of Outliers,” IEEE Trans. Knowledge and

Data Eng., vol. 18, no. 2, pp. 145-160.

[10] Angiulli.F, Basta.S, Lodi.S, and Sartori.C (2010), “A Distributed
Approach to Detect Outliers in very Large Data Sets,” Proc. 16th

Int‟l Euro-Par Conf. Parallel Processing (Euro-Par), pp. 329-34.

[11] Angiulli.F, Basta.S, Lodi.S, and Sartori.C(2013), “A Distributed
Strategies for Mining Outliers in Large Data Sets,” IEEE Trans.

Knowledge and Data Eng.Vol 25.Nov 7,pp 1520-1532

[12] Xindong Wu1, 2, Xingquan Zhu3, Gong-Qing Wu2, Wei Ding,

“Data Mining with Big Data”. IEEE Trans. Knowledge and Data

Eng.jan 2014.pp 97-107

[13] https://github.com/pranab
[14] Apache Hadoop. http://hadoop.apache.org/.

[15] http://archive.ics.uci.edu/ml/datasets/Poker+Hand

[16] Dean, J. and Ghemawat, S. (2004), „MapReduce: Simplified data
processing on large Clusters‟. Proceedings of the Sixth

Symposium of Operating Systems Design and Implementation

(OSDI 2004), CA, USA, pp. 137-150.

	1) The current solving set objects are received along with the current lower bound for the weight of the top nth anomaly,
	2) Compare them with the local objects.
	3) Extract a new set of local candidate objects (the data points with the top weights, according to the current calculations together with the list of local nearest neighbors with respect to the solving set.
	4) Determining the number of local active objects, that is the data points which are having weight not smaller than the current lower bound.
	D. MapReduce model for distance based anomaly analysis[13].
	1) A MapReduce job to find pair wise distance between all data points.
	2) A MapReduce job which finds the k nearest neighbors of an object and find the weight of the object with respect to the k nearest neighbors.
	1) Select the top n after sorting the result by descending order of the average distance
	2) Select all with average distance over a predefined threshold after sorting the result by the descending order of the average distance.

	A. Initial Stage
	B. Intermediate Stage
	1) A supervisor MapReduce module which takes as input the candidate objects, stores it’s true as well as upper bound weights and generates new candidate objects by selecting objects with top n upper bound weight.
	2) The Similarity MapReduce module which takes as input, output from supervisor MapReduce module and finds the distance between the candidate set objects and all other objects which is stored in the HDFS.
	3) The output from similarity MapReduce module is fed into Compute Weight MapReduce module which finds K nearest neighbors of each candidate objects and thereby calculates its true weight. This module also finds the upper bound weights of all the objects a�

	C. Final Stage
	REFERENCES

